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Abstract
The topic of this thesis is to built an accurate automatic speech recognition system to be able to
recognize speech using Kaldi, an open-source toolkit for speech recognition written in C++ and
with free data. First of all, the main process of automatic speech recognition is explained in details
on first steps. Secondly, different approaches of training and adaptation techniques are studied in
order to improve the recognition accuracy. Furthermore, as data size is a very important point in
order to achieve enough recognition accuracy, the role of it, is also studied on this thesis.

Keywords:  Automatic  Speech  Recognition(ASR),  speaker  adaptation,  discriminative  training,
Kaldi, voice recognition, finite-state transducers.
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1 Introduction
The Automatic Speech Recognition (ASR) is a discipline of the artificial intelligence that has as
main goal allow the oral communication between humans and computers, i.e. basically consist on
convert the human speech into a text automatically. The main problem of the ASR is the complexity
of  the  human  language.  Humans  use  more  than  their  ears  when  they  listening,  they  use  the
knowledge they have about the speaker and his environment. In ASR we only have the speech
signal. But, as we will see in the following steps, there are different approaches to try to get good
performance of the speech.

Both acoustic modeling and language modeling are important parts of modern statistically-based
speech recognition algorithms.  Modern general-purpose speech recognition systems are based on
Hidden Markov Models (HMM). These are statistical models that output a sequence of symbols or
quantities. 

In our ASR system,we use Kaldi, a toolkit for speech recognition written in C++ and licensed under
the Apache License v2.0. 

1.1 Project overview and goals
The purpose of  this  project  is  learn about  both ASR and Kaldi  toolkit,  to  be  able  to  build an
Automatic Speech Recognition system.

We will study first all the process related to recognize speech automatically to understand how it
works, and therefore be able to built a basic system. 

In addition, we pretend to retrain and adapt the original ASR system to improve the recognition
accuracy. As available data it will be limited by our resources, after evaluate different approaches,
we would like to find a commitment between the quality and the data used to built a system easy to
handle.

Furthermore, we pretend to create a Graphical User Interface to test our system.

1.2 Project background
The  project  is  carried  out  at  the  electronic  department  of  AGH  University  of  Science  and
Technology.  

This  project  is  independent of any department or company research and starts  with VoxForge's
recipe as a base of our system.
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The  main  project  initial  ideas  are  provided  by  the  supervisor  Bartosz  Ziólko.  Although  the
development of it is carried out by both the supervisor and I together.

1.3 Project outline
In chapter 2 we introduce the main theory about Automatic  Speech Recognition and the Kaldi
toolkit.  At  the  beginning  of  chapter  3  we describe  briefly  discriminant  training.  After  that  we
introduce the baseline of our training experiment with the different techniques to use. Finally, we
described the acoustic models trained and the results that their present. In chapter 4, we introduce
first  acoustic  model  adaptation.  Next,  we  present  the  experiments  done  with  the  different
approaches of the adaption. Chapter 5, describes the graphic user interface built to integrate the
ASR systems. Finally, chapter 6 summarizes the thesis.
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2 Automatic Speech Recognition background

2.1 Automatic Speech Recognition
The statistical approach to automatic speech recognition aims at modeling the stochastic relation
between  a  speech  signal  and  the  spoken  word  sequence  with  the  objective  of  minimizing  the
expected error rate of a classifier. The statistical paradigm is governed by Bayes'  decision rule:
given a  sequence of acoustic  observations  x1

T= x1,…,xT  as  the constituent  features  of  a  spoken
utterance, Bayes' decision rule decided for that word sequence w1

N=w1,…,wN which maximizes the
class posterior probability p( w1

N|  x1
T ):

[w N
1

]opt=argmax
w N

1

P(w N
1
∣x T

1
) (2.1)

Provided that the true probability distribution is used, Bayes' decision rule is optimal among all
decision  rules,  that  is,  on  average  it  guarantees  the  lowest  possible  classification  error  rate.
However, for most pattern recognition tasks the true probability distribution is usually not known
but has to be replaced with an appropriate model distribution. In automatic speech recognition, the
generative  model,  which  decomposes  the  class  posterior  probability  into  a  product  of  two
independent stochastic knowledge sources, became widely accepted:

P(w N
1
∣x T

1
)=

P(xT
1
)⋅(P(x T

1
∣w N

1
))

P( xT
1
)

(2.2)

The denominator P( x1
T) in Eq. 2.2 is assumed to be independent of the word sequence  w1

N and
hence, the decision rule is equivalent to: 

P(w N
1
∣x T

1
)=P(x T

1
)⋅(P (xT

1
∣w N

1
)) (2.3)

The word sequence [w1
N]opt which maximizes the posterior probability is determined by searching

for that word sequence which maximizes the product of the following two stochastic knowledge
sources:

• The acoustic model P( x1
T |  w1

N ) which captures the probability of observing a sequence of
acoustic observations  x1

T given a word sequence  w1
N.

• The language model P( w1
N) which provides a prior probability for the word sequence w1

N. 

A statistical speech recognizer evaluates and combines both models through generating and scoring 
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a  large  number  of  alternative  word  sequences  (so-called  hypotheses)  during  a  complex  search
process. Figure 2.1 illustrates the basic architecture of a statistical automatic speech recognition
system [1].

Figure 2.1: Basic architecture of a statistical automatic speech recognition system.

2.1.1 Signal analysis
The first step in any automatic speech recognition system is to extract features, i.e identify the
components of the audio signal that are good for identifying the linguistic content and discarting all
the other stuff which carries information. No two utterances of the same word or sentence are likely
to give rise to the same digital signal. In other words, the aim of signal analysis is to derive a feature
vector such that the vectors for the same phoneme are as close to each other as possible, while the
vectors for different phonemes are maximally different to each other.

The main factors which could cause two random speech samples to differ from one another are:

• Phonetic identity:  Differences among speakers pronunciation depends on gender,  dialect,
voice, etc.

• Microphone: And other properties of the transmission channel.

• Environment: Background noise, room acoustics, etc.
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Common signal  processing  techniques  used  in  automatic  speech recognition  are  based  on Mel
Frequency  Cepstral  Coefficients  (MFCC)  and  Perceptual  Linear  Prediction  (PLP)  [2].  In  this
project, we are going to make use of MFCC.

The main point to understand it is that the sounds generated by a human are filtered by the shape of
the vocal tract. This shape determines what sound comes out and manifest itself in the envelope of
the short time power spectrum. If we can determine the shape accurately, this should give us an
accurate representation of the phoneme being produced.  The job of the MFCC or PLP is to 
accurately represent this envelope.

Both MFCC and PLP transformations are applied on a sampled and quantized audio signal¹. The
overall MFCC computation that Kaldi follows is [3]:

• Work out the number of frames in the file (typically 25ms frames shifted by 10 ms each
time).

• For each frame:
1) Extract the data, do optional dithering, pre-emphasis ad dc offset removal, and multiply

it by a windowing function.

2) Work out the energy at this point (if using log-energy not CO).

3) Do Fast Fourier Transform (FFT) and compute the power spectrum.

4) Compute the energy in each mel bin.

5) Compute  the  log  of  the  energies  and  take  the  cosine  transform,  keeping  as  many
coefficients as specified (e.g. 13).

6) Optionally do cepstral liftering; this is just a scaling of the coefficients, which ensures
they have a reasonable range.

Feature extraction is an essential first step in speech recognition applications. In addition to static
features extracted from each frame of speech data, it is beneficial to use some transformations to
improve the recognition.

Transforms, projections and other feature operations that are typically not speaker specific include:

• Frame splicing and Delta feature computation[4].

• Linear Discriminant Analysis (LDA) transform[5].

• Heteroscedastic Linear Discriminant Analysis (HLDA).

• Maximum Likelihood Linear Transform (MLLT) estimation[6].

¹  In our experiments we use 16KHz sampling frequency and 16 bit samples.
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On the  first  step  of  the  part  3,  we will  use  and  compare  both  Delta  feature  computation  and
LDA+MLLT.

Delta feature computation

MFCC feature only takes account of the relationship in phonetic frames without considering the
relationship between them. Phonetic signals are essentially continuous, so the acquisition of the
dynamic changing feature between phonetic frames will improve the performance of recognition.

Therefore, Delta feature is the Fourier Transform of the time order of the phonetic frames order. For
instance: If we have 13 MFCC coefficients, with the ∆+∆∆ transformation we also get 13+13 delta
coefficients, which would combine to give a feature vector of length 39 (13+13+13). Then, the
original vector is reduced to vector of 39 MFCC ∆+∆∆ acoustic features.

LDA+MLLT

LDA: Is a linear transform that reduce dimensionality of our input features. The idea of LDA is to
find a linear transformation of feature vectors from an n-dimensional space to vectors in an m-
dimensional space (m<n) such that the class separability is maximum.

MLLT: Estimates the parameters of a linear transform in order to maximize the likelihood of the
training data given a diagonal-covariance Gaussian mixture models; the transformed features are
better represented by the model than the original features.

2.1.2 Acoustic Model
The acoustic model P( x1

T |  w1
N ) provides a stochastic description for the realization of a sequence

of acoustic observation vectors x1
T given a word sequence w1

N .  Due to data sparsity, the model for
individual words as well as the model for entire sentences is obtained by concatenating the acoustic
models of basic sub-word units according to a pronunciation lexicon. Sub-word units smaller than
words enable a speech recognizer to allow for recognizing words that do not occur in the training
data. Thus, the recognition system can ensure that enough instances of each sub-word unit have
been observed in training to allow for a reliable estimation of the underlying model parameters.

The type of sub-word units employed in a speech recognizer depends on the amount of available
training data and the desired model complexity: while recognition systems designed for small
vocabulary sizes (<100 words) typically apply whole word models, systems developed for the
recognition of large vocabularies (> 5000 words) often employ smaller sub-word units which
may be composed of syllables, phonemes, or phonemes in context. Context-dependent phonemes
are also referred to as n-phones. Commonly used sub-word units employed in large vocabulary
speech recognition systems are n-phones in the context of one or two adjacent phonemes, so-called
triphones or quinphones. Context-dependent phoneme models allow for capturing the varying
articulation that a phoneme is subject to when it is realized in different surrounding phonetic
contexts (co-articulation)[1].
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Typically, the constituent phones for various acoustic realizations of the same word are produced
with different duration and varying spectral configuration, even if the utterances are produced by
the same speaker. Each phone will therefore aggregate an a-priori unknown number of acoustic
observations. The temporal distortion of different pronunciations as well as the spectral variation
in the acoustic signal can be described via a Hidden Markov Model (HMM). A HMM is a stochastic
finite state automaton that models the variation in the acoustic signal via a two-stage stochastic
process. The automaton is defined through a set of states with transitions connecting the states. The
probability P( x1

T |  w1
N ) is extended by an unobservable (hidden) variables representing the states:

P(w N
1
∣x T

1
)=∑

sT
1

P(x T
1

, sT
1
∣w N

1
) (2.4)

2.1.3 Language Model
The language model P( w1

N )provides a prior probability for the word sequence  w1
N  = w1,…, wN.

Thus, it inherently aims at capturing the syntax, semantics, and pragmatics of a language. Since
language models are independent of acoustic observations, their parameters can be estimated from
large text collections as, for instance, newspapers, journal articles, or web content. Due to a
theoretically infinite number of possible word sequences, language models require suitable model
assumptions to make the estimation problem practicable. For large vocabulary speech recognition,
m-gram language models have become widely accepted. An m-gram language model is based on
the assumption that a sequence of words follows an (m-1)-th order Markov process, that is, the
probability of a word w n is supposed to depend only on its m-1 predecessor words[1]:

P(w N
1
)=∏

n=1

N

P(wn∣w
n−1

1
) (2.5)

P(w N
1
)modelassumption=∏

n=1

N

P (wn∣w
n−1

n−m−1
) (2.6)

2.1.4 Global search
Given a sequence of acoustic observations x1

T, the objective of the global search is to find that word
sequence which maximizes the a-posteriori probability:

[w N
1

]opt=argmax
w N

1

P(w N
1
∣x T

1
)=argmax

w N
1

(P (w N
1
)P (xT

1
∣w N

1
)) (2.7)

In principle, the decoder has to align the sequence of acoustic observations x1
T with all possible

state sequences s1
T that are consistent with a word sequence  w1

N. Using m-gram language models 
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and an acoustic  model  based on HMMs, due to  a  complex optimization process which can be
reduced by approximating the sum over all paths with the Viterbi algorithm[7]

2.1.5 Evaluation
Exist different methods to evaluate the quality of an ASR system. Word Error Rate (WER) is a
common metric of the performance of a speech recognition.

The main difficulty of measuring performance lies in the fact that the recognized word sequence can
have  a  different  length  from  the  reference  word  sequence.  The  WER  is  derived  from  the
Levenshtein distance, but working at the word level. This problem is solved by first aligning the
recognized word sequence with the reference word sequence using dynamic string alignment.

WER=
100∗(S+ I +D)

N
(2.8)

Where:

-N: Is the number of words in the reference
-S: Is the number of substitutions
-I: Is the number of insertions
-D: Is the number of deletions.

A basic alignment example:

Ref: portable   *** phone upstairs last night so ***

Hyp: preferable form of stores next light so far

Eval: S  I S S S S I

WER=
100∗(5+2+0)

6
(2.9)

2.2 Kaldi
Kaldi is an open-source toolkit for speech recognition written in C++ and licensed under the Apache
License v2.0. The goal of Kaldi is to have modern and flexible code that is easy to understand,
modify and extend [8].

Exist severals potential choices of open-source toolkit for building a recognition system. Kaldi 
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specific requirements are: a finite-state transducer (FST) based framework, extensive linear algebra
support, and non-restrictive license led to the development of Kaldi. Important features of Kaldi
include:

• Integration with Finite State Transducers.

• Extensive linear algebra support.

• Extensible design.
• Open license.

• Complete recipes.

• Thorough testing

In figure 2.1 we give a schematic overview of the Kaldi toolkit. The toolkit depends on two external
libraries that are also freely available: one is OpenFst [9] for the finite-state framework and the
other is numerical algebra libraries. 

Access to the library functionalities is provided through command-line tools written in C++, which
are then called from a scripting language for building and running a speech recognizer. Each tool
has very specific functionality with a small set of command line arguments: for example, there are
separate  executables for accumulating statistics,  summing accumulators,  and updating a  GMM-
based acoustic model using maximum likelihood estimation.

Figure 2.2: A simplified view of the different components of Kaldi.

Kaldi feature extraction: His feature extraction and waveform-reading code aims
to create standard MFCC and PLP features.
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Kaldi  acoustic  modeling:  Support  conventional  models  (i.e.  diagonal  Gaussian
Mixture Models (GMMs) ) and Subspace Gaussian Mixture Models (SGMMs),
but also extensible to new kinds of model.

Kaldi phonetic decision trees: His goal is built the phonetic decision tree code
were to make it efficient for arbitrary context sizes. The conventional approach is,
in  each  HMM-state  of  each  mono-phone,  to  have  a  decision  tree  that  asks
questions.

Kaldi language modeling: Kaldi uses an FST-based framework.

Kaldi decoding graphs: All the training and decoding algorithms use WFTs.

Kaldi  decoders:  It  has  several  decoders,  from simple  to  highly  optimized.  By
decoder we mean a C++ class that implements the core decoding algorithm.

2.2.1 Finite-State Transducers
Much of current large-vocabulary speech recognition is based on models such as
HMMs, lexicons, or n-gram statistical language models that can be represented by
weighted finite-state transducers. 

A FST is a finite automaton² whose state transitions are labeled with both input
and output symbols. Therefore, a path through the transducer encodes a mapping
from  an  input  symbol  sequence,  or  string,  to  an  output  string.  A weighted
transducer puts weights on transitions in addition to the input and output symbols.
Weighted transducers are thus a natural choice to represent the probabilistic finite-
state models prevalent in speech processing[10]. 

The examples of figure 2.3 is a representation of weighted FST. In figure 2.3.a,
the legal word strings are specified by the words along each complete path, and
their  probabilities  by  the  product  of  the  corresponding transition  probabilities.
Figure  2.3.b represents  a  toy  pronunciation  lexicon as  a  mapping from phone
strings to words in the lexicon.

Figure 2.3: Weighted finite-state transducer  

¹  In our experiments we use 16KHz sampling frequency and 16 bit samples.
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The general approach that Kaldi use to decode graph construction is described
briefly  next.  The  overall  picture  for  decoding-graph  creation  is  that  we  are
constructing the graph HCLG = H o C o L o H. Here

• G is an acceptor (i.e its input and output symbols are the same) that encodes 
the grammar or language model.

• L is the lexicon; its output symbols are words and its input symbols are  
phones.

• C represents the context-dependency: Its output symbols are phone and its 
input symbols represent context-dependent phone.

• H  contains  the  HMM  definitions;  its  output  symbols  represent  context-
dependent phone and its input symbols are transitions-ids, which encode the 
pdf-id and other information.

This is the standard recipe. However, there are a lot of details to be filled in.

3 Acoustic Model training
Estimation  of  HMM  parameters  is  commonly  performed  according  to  the
Maximum  Likelihood  Estimation(MLE)  criterion,  which  maximizes  the
probability  of  the training  samples  with  regard to  the  model.  This  is  done by
applying  the  Expectation-Maximization  (EM)  algorithm,  which  relies  on
maximizing the log-likelihood from incomplete data, by iteratively maximizing
the expectation of log-likelihood from complete data[11].

The MLE criterion can be approximated by maximizing the probability of the best
HMM state sequence for each training sample, given the model, which is known
as Viterbi training.

This  is  the  procedure  that  we  will  follow  on  the  first  steps  of  our  training
experiments. Then, we will  try to improve the accuracy of the acoustic model
training with different approaches as it is explained in section 2.1 or in 3.1

3.1 Discriminative training
As we explain in  the above section,  model  parameters  in  HMM-based speech
recognition systems are normally estimated using MLE. But other  approach it
could be carried out based on other optimization criteria. In contrast to Maximum 
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Likelihood, discriminative training also takes the competing classes into account
to optimize the parameters. This should due as to an improvement on terms on
recognition  accuracy.  We  are  going  to  evaluate  three  of  the  most  typical
discriminative training methods: 

MMI

The  Maximum  Mutual  Information  (MMI)  goal  is  the  maximize  the  mutual
information between data and their corresponding labels/symbols[12]. 

bMMI

Boosted  MMI  is  a  modified  form  of  the  MMI  objective  function.  The
modification consists of boosting the likelihoods of path in the denominator lattice
that have a higher phone error relative to the correct transcript[13].

MPE

Basically, Minimum Phone Error, try to carried out a minimization and estimation
of the training set errors.[12,14]

3.2 Acoustic data
All data used in our training experiments comes from VoxForge project[16]. It
was setup to collect transcribed speech for use with Free and Open Source Speech
Recognition Engines. They make available all submitted audio files that VoxForge
users record under the GPL license. Therefore, the data available are recorder in
different  environments  and  under  different  conditions.  It  could  be  possible  to
download speech data of different languages. In our experiments, we will train
and test our acoustic models just with English data ( American, British, Australian
and Zealand)[16].

In the following table 3.1 the dataset used for our experiment is described.

English dataset #Speakers #sentences Audio[sec]  per
sentence

Train 358 15264 5

Test 20 399 5

Table 3.1: The data used to train and test the acoustic models consist of 358
and 20 speakers respectively. The number of sentences of each speaker differs.
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3.3 Experiment
The main goal in our experiment consist  on test  different approaches of training with different
amount of data to be able to decide which model could be better in terms of the quality. The quality
will be measured by WER on the acoustic models trained by different methods.

As our data are limited, we do not fix any minimum threshold of accuracy. Instead of that, we are
going to compare the results with a mono-phone acoustic model to see how each technique improve
the performance of our model.

The recordings and their transcriptions from training dataset are used for acoustic modeling. The
estimate dataset AMs are evaluated on the test set.

Baseline system

As a flat start, we trained a mono-phone system (mono) using the MFCC's and Δ+ΔΔ features as we
described in section 2.1.1. Then, we must align the feature vectors to HMM states using utterances'
transcriptions (Before any retraining, we must do forced-align) . Finally, we retrain the triphone AM
(tri1a)

We are going to use different subsets of data to adjust the data necessary to train the model, since is
a waste of time use all of it(Typically, mono-phone acoustic models does not need so much data to
train their parameters). The amount of different data used to train the mono-phone and tri-phone
models are described on the table 3.2

Dataset # sentences

Train_500 500

Train_1000 1000

Train_2000 2000

Train_4000 4000

Train_8000 8000

Train_12000 12000

Train_15264 15264

Table 3.2: Different subsets of data based on the number of sentences used to train the mono-phone and tri-
phone model.
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3.4 Evaluation

3.4.1 Conditions of evaluation
The speech samples were recorded in different environment, sampled at 16 Khz.
In each experiments, each speech signal was parameterized using 13 MFCC. The
analysis windows size was 25ms with 10 ms overlap as we described in section
2.1. We use a bi-gram language model which is estimated from the training data
transcription.  As the test  dataset  is  different  than train dataset,  may be appear
unknown words, so called Out of Vocabulary Word.

The decoding of the test utterances is performed always with the same parameters,
so that different Ams can be compared. Specifically the parameters set are list
next: 

• gmm-latgen-faster
• max-active=7000
• beam=13.0
• lattice-beam=6.0
• acoustic scale= 0.083333
• model size= #num-leaves #tot-gauss = 2000 11000

As we explain on the beginning of section 3.3, we are interested on the WER
improvement in comparison with a basic mono-phone model.

3.4.2 Experiments evaluation
Mono-phone and tri-phone acoustic models

Firs of all, we are going to analyze which is the amount of data needed to train an
mono-phone system (mono) and tri-phone system (tri1a). In principle as larger is
the  amount  of  data  used  to  train  acoustic  models,  better  results  on  terms  of
recognition  quality  is  achieve.  Figure  3.1  and  3.2  shows  the  performance  of
mono-phone and tri-phone models depending on the number of utterances used to
train the model respectively.
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Figure 3.1: The figure displays the WER% depending the portion of the data size in terms
of number of sentences on the train step.

Context-dependent tri-phones can be made by simply cloning mono-phones and
then re-estimating using trip-phones transcriptions. To do that, we use the mono-
phone model trained by 1000 sentences.

Figure 3.2: The figure displays the WER% depending the portion of the data
size in terms of number of sentences on the train step.

As we can see on figure 3.1, the amount of data needed to train the mono-phone
model  do  not  increase  significantly  the  WER since  1000  sentences  are  used.
Because of  that,  it  is  waste  of  time use all  data  available  to  train the model.
However, as the amount of training data is larger, best performance is achieve on
trip-phone  acoustic  model.  Next,  all  experiments  are  will  be  done  with  all
available data, because as larger is the training data better results will be achieve.
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Δ+ΔΔ  vs LDA+MLLT

We are going to re-train the tri1a model with two different transformation described in section 2.1.1.
Here, we will use all amount of data available to train the models as we conclude on section 3.4.
Moreover, we are going to evaluate the performance of the model depending on the model size.

Δ+ΔΔ triples the number of 13 MFCC features by computing the first and second derivates from
MFCC coefficients during 35 iterations. Therefore, 39 is the number of MFCC features per frame
used to represent the shape of the speech to determines what sound comes out.

LDA+MLLT  is  set  with  typical  configuration:  13-dimension  input,  -3..3  splicing  and  40-
dimensional output, so the number of features is (13*7+1) *40 [The +1 is for the bias term, which
substracts the mean, IIRC]

Table 3.3 shows the WER obtained with  Δ+ΔΔ transformation and table 3.4 LDA+MLLT using
different model size:

#leaves-
#total
gauss

#1000-
#9000

#1000-
#11000

#1000-
#13000

#1500-
#9000

#1500-
#11000

#1500–
13000

#2000-
#9000

#2000-
#11000

#2000-
#13000

WER% 17.91 17.79 16,67 18.16 17.85 16.72 17.77 16.78 16.77

Table 3.3: WER obtained when we decode with Δ+ΔΔ using different model sizes. 

#leaves-
#total
gauss

#1000-
#9000

#1000-
#11000

#1000-
#13000

#1500-
#9000

#1500-
#11000

#1500–
13000

#2000-
#9000

#2000-
#11000

#2000-
#13000

WER% 16.80 17.11 15.59 17.11 16.04 15.93 17.14 16.18 15.79

Table 3.4: WER obtained when we decode with LDA+MLLT using different model sizes.

We can observe that increasing the model size in average lead to better performance. Although each
parameter  alone  improve  the  recognition,  the  most  decisive  parameter  is  the  total  number  of
gaussians.  

Moreover,  we  can  appreciate  that  LDA+MLLT  upgrade  almost  1%  the  WER  than   Δ+ΔΔ
transformation.
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Discriminative training

Finally,  the  last  step,  consist  on  evaluate  MMI,  bMMI and MPE as  table  3.5
presents. We take as previous training stage LDA+MLLT transform with 2000-
3000 as number of leaves and number of total gaussians respectively.

Model WER%

tri2b_mmi 13.83

tri2b_bmmi 13.83

tri2b_mpe 13.83

Table 3.5: On this table WER of Maximum Mutual Information, boosted MMI and
Minimum Phone Error is represented respectively.

We can observe that although three different approaches of discriminative training
achieve better recognition than last stage, we can not distinguish between each
kind of it. Probably, one of the reasons it could be that we need more training data
to estimate correctly the parameters. We just achieve less than 2% of improvement
with discriminative training. During the simulations when the amount of training
data were almost the half data, the improvements achieved were only 0,1%.

3.4.3 Results
In  this  section  we  are  going  to  show the  result  of  different  acoustic  training
methods presented on the previous sections. 

Model/method WER%

Mono (Δ+ΔΔ ) 34.65

Tri1a (Δ+ΔΔ ) 17.9

Tri2a (Δ+ΔΔ ) 16.77

Tri2b ( LDA+MLLT) 15.79

tri2b_mmi
( LDA+MLLT+MMI)

13.83

tri2b_bmmi
( LDA+MLLT+bMMI)

13.83

tri2b_mpe
( LDA+MLLT+MPE)

13.83

Table 3.5: The table shows the WER of different acoustic models evaluated in two different ways:
% and (substitutions+deletions+inserted)/total words in the reference transcription.
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As it could be seen on table 3.5 context-dependent phoneme models (tri-phone),
contrary to mono-phone models, allow for capturing the varying articulation that a
phoneme  is  subject  to  when  it  is  realized  in  different  surrounding  phonetic
contexts. Therefore the WER improve significantly. 

Moreover, use different linear non-dependent transforms lead to a considerably
reduction of word error rate. Although it can be seen, LDA+MLLT works better
than Δ+ΔΔ. 

Finally, make use of an additional step of discriminant training lead also a better
performance,  thanks to  it  takes  account  the competing  classes  to  optimize  the
main parameters.

4 Acoustic Model adaptation
In statistical speech recognition, there are usually mismatches between the conditions under which
the  model  was  trained  and  those  of  the  input.  Mismatches  may  occur  because  of  differences
between speakers, environmental noise, and differences in channels. They should be compensated
in order to obtain sufficient recognition performance. Acoustic model adaptation is the process of
modifying  the  parameters  of  the  acoustic  model  used  for  speech  recognition  to  fit  the  actual
acoustic characteristics by using a few utterances from the target user[16,17,18]

In this thesis, we want to test different approaches of acoustic model adaptation.
We will try to adapt our model to both particular speakers and noisy conditions.

4.1 Speaker adaptation
As we discussed on the previous point, adaptation it could be beneficial for our system depending
on our requirements. 

Speaker independent (SI) system is desirable in many applications where speaker-specific data not
exist.   Otherwise, if dependent data are available, the system could be trained with the specific
speakers to obtain better performance. Speaker dependent systems can result in word error rate 2-3
times lower than SI systems (given the same amount of training data). But, the problem on the SD
systems is that for large-vocabulary continuous speech recognition, a lot of amount data is needed
to reliable estimate system parameters. Also, if a different speaker try to use the system, he will
obtain very bad results[17,18].
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Because of that, we would like to train the model as SI system, and then adapt the
model to a specific speakers. With the speaker adaptive (SA) system we could
achieve:

• Error rates similar to SD systems.
• Building on a SI systems.
• Requiring only a small fraction of the speaker-specific training data used by 

an SD system.

Supervised and unsupervised adaptations

In supervised adaptation, a transcription exist for each utterance. In unsupervised adaptation, it does
not.

The  users  in  supervised  adaptation  should  follow some steps  to  get  the  transcription  of  some
utterances. Depending of the adaptation technique used, the amount of data required can vary. But,
as the transcription is known, the HMM may be constructed.

Unsupervised adaptation is usually needed for such short-period applications since users should not
have to spend time registering their  voices. The problem here is in the case of the recognition
accuracies of the speaker independent are not high enough the estimation could be reported big
problems,  because  signals  generated  by  mis-recognitions  may  significantly  degrade  adaptation
performance. Although the accuracy of the speaker should not be a problem, when the speakers are
non-native is it. 

Therefore, we decided that to adapt our acoustic model we will use the supervised
adaptation. Thus, we could control the accuracy of the adapt data, and in case it
would be necessary we must record again the new data. 

Batch and on-line adaptation

Batch: All adaptation data is presented to the system in a block before the final system is estimated.

On-line adaptation is used in applications where the speakers often change and change points are
not given beforehand.

As batch adaptation performs better than on-line adaptation and our AM doesn't
consist on a dialogue system where the speakers change very often, we will make
use in our experiments of batch adaptation.

Types of speaker adaptations

Nowadays,  exist  several  approaches  to  try  to  adapt  an  acoustic  model.  It  is
possible get it re-training the system, apply some transformation or combine both
techniques together. We are going to present the most typical techniques used in
speaker adaptation. Later we will evaluate it, and discuss how they work 
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depending on the data used.

MAP

The Maximum a Posteriori  estimate the HMMs model  parameters providing a
natural way of incorporating prior information of the model in the model training
process[19].

fMLLR

A set of transformation matrices for the HMM Gaussian parameters are estimated
which maximize the likelihood of adaptation data. The set of transformations is
relatively small compared to the total number of Gaussians in the system and so a
number of Gaussians share the same transformation matrices. This means that the
transformation parameters can be robustly estimated from only a limited amount
of data, which allows all the Gaussians in the HMM set to be updated. For a small
amount of data only a single global transformation is used. The transformation
estimates the mean and variance parameters in two separates stages[20] .

fMLLR also known as Constrained MLLR is just a simplifying implementation
and improving runtime performance of basic MLLR.

SAT(+fmllr)

Speaker  adaptive  training  tries  to  separate  speaker  induced  variations  from
phonetic ones. SAT adds speaker dependent transforms for each speaker in the
training set[17,21].

4.2 Acoustic data
The acoustic data used to make different speaker adaptations are from VoxForge
too.  Obviously,  the speakers  are  independent  from the train dataset.  Table  4.1
described the data used.

Dataset # speakers Approx.  audio[sec]
per utterance

#  utterances  per
speaker

Adaptation data_1 1 5 63

Test data_1 1 5 25

Table 4.1: Number of speakers, duration of each utterance, number of 
utterances/sentences per speaker.
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4.3 Experiment
The main goal of our experiment consist on adapt our acoustic model by different
approaches to estimate which one is valid or not and to decide the best in terms of
both recognition accuracy and the amount of data needed. As we described in
section 1.1, our final goal is to built an acoustic model that can recognize random
people speech with acceptable quality and the minimum data possible.

Baseline system

To evaluate the performance of different speak adaptation approaches explained on section 4.1, we
take the tri2b acoustic model as a flat start of our adaptations. Next, we are going to evaluate it
using different subsets of data from one speaker as table 4.2 shows. As the different subset of data is
selected with a basic script which chose randomly a number defined of utterances from the speaker,
it is logical that some sentences are most correlated with the train set than others. Because of that,
we must evaluate the results evolution, even when some specific point deteriorate the performance.

Adaptation data # utterances per speaker  Approx.  audio[sec]  per
utterance

data_10 10 5

data_20 20 5

data_30 30 5

data_40 40 5

data_50 50 5

data_63 63 5

Table 4.2: Different amount of data based on number of 
utterances/sentences that are will be used on the different approaches of 
adaptation, with the approximate duration of each sentence in seconds.

The WER% obtained decoding our test set based on just one speaker with the tri2b acoustic model
is 14.88. Therefore we will evaluate the improvement of our adapted models with this value as a
reference.
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4.4 Evaluation

4.4.1 Conditions of evaluation

4.4.2 Experiments evaluation
fMLLR 

The fMLLR transformation   adapts  our  speaker  independent  system tri2b(LDA+MLLT) to  our
chosen speaker, and it is performed in our case during the decoding phase.

We do not have to use any adaptation data to adapt our model, because it is generated during the
decoding. Basically, it performs a first decoding on the speaker independent system and use the
decoded transcriptions as the adaptation data for a second pass decoding.

The WER% achieve it with the fMLLR adaptation is 12.68.

MAP

As the MAP transform needs an adaptation data to adapt the speaker independent system, we are
going to evaluate the perform of it with different amount of adaptive data described in table 4.2

The adaptation proceeding used in our experiment does not retrain the tree, it just does one iteration
of MAP adaptation to the model. 

First of all,we are going to evaluate it with different set of the smoothing constant as table 4.3
shows which corresponds to the number of the “fake counts” that we add for the old model. As
larger  is  the  value  of  the  smoothing  constant,  less  aggressive  is  the  re-estimation  and  more
smoothing. 20 is the typical value.  The amount of adapt data used to test  it  consist  just on 63
sentences.

Smoothing constant value WER%

10 12.84

15 13.30

20 13.32

Table 4.3 WER% obtained on the MAP estimation based on 
different values of smoothing constant.
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Finally, we are going to evaluate the improvement of MAP adaptation based on
the amount of adaptation data used fixing the smoothing constant as 10 (it aims to
little better performance as Table 4.3 shows) as the table 4.4 shows.

Adapted  data
10– WER%

Adapted  data
20 – WER%

Adapted  data
30 – WER%

Adapted  data
40– WER%

Adapted  data
50 – WER%

Adapted  data
63 – WER%

13.30 13.76 12.84 13.76 12.90 12.84

Table 4.4: WER% obtained on the MAP adaptation depending the different amount of data 
used in terms of number of sentences per speaker. For instance: 25-WER% corresponds to

the WER% obtained using as an adapted data a subset of 25 sentences of the specific
speaker.

We can observe that generally, word error rate is reducing when most adapted data is available. As it
is  logical,  when  most  data  available,  main  parameters  of  the  specific  features  can  be  better
estimated.

MAP+fMLLR

Since the adaptation by MAP or MLLR alone carries to a significant improvement we want to
evaluate how this two adaptation techniques work together. When the adaptation data is available,
MAP adaptation  is  executed  first  and  then  MLLR  adaptation  is  followed  using  the  adapted
parameters.

As we made with MAP adaptation alone, here we also want to evaluate the accuracy of our system
depending the amount of adaptation data used as table 4.5 shows.

Adapted  data
10 – WER%

Adapted  data
20 – WER%

Adapted  data
30 – WER%

Adapted  data
40– WER%

Adapted  data
50 – WER%

Adapted  data
63 – WER%

11.52 11.47 11.46 11.93 11.32 11.01

Table 4.5: WER% obtained on the fMLLR+MAP adaptation depending the different amount of
data used in terms of number of sentences per speaker. 

As  we  can  observe,  combine  both  approaches  together  lead  to  a  significant
improvement  on  the  recognition  accuracy.  It  achieves  almost  2%  of  WER
reduction.

SAT

Finally, we evaluate the performance of Speaker Adapted Training, i.e. the acoustic model is trained
with the objective of obtain better estimation of the speaker MLLR transforms.

The WER% achieve it with SAT is 12.84. 
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4.4.3 Results
In  this  section  we  are  going  to  show the  result  of  different  acoustic  training
methods presented on the previous sections. 

Model/method WER% #Clarification

tri2b(LDA+MLLT) 14.88 -

MAP 12.84 63  sentences  used  as  adapted
data

fMLLR 12.68 -

MAP+fMLLR 11.01 63  sentences  used  as  adapted
data

SAT 12.84 -

Table 3.6: The table shows the WER% of different acoustic models. Furthermore, an additional
section of clarification is include to define the amount of data used in approaches based on the

requirement of adaptation data.

We can observe that all different adaptation approaches improver the word error
rate of our reference model. Maximum a Posteriori and Speaker Adaptive Training
obtain same improvement. A little bit more than 2%, but it seems that if we will
use more adapted data on the first approach, better results could be achieve.

Moreover,  we observe  that  fMLLR achieve  better  performance than  SAT and
MAP adaptation using just 63 sentences of adapted data.

Therefore,  as  a  conclusion,  depending  of  the  sistem  approach  and  user
requirements,  fMLLR  and  MAP+fMLLR  would  be  selected  when  it  will  be
necessary speaker adaptation.

If  the system will be used in a environment when the speakers often change and
they do not have time to register their voices, fMLLR will be ideal.

However, if the system is often used by the same speakers, or people should have
time  to  register  their  voices,  MAP+fMLLR  speaker  adaptation  it  would  be
selected.
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5 API
Once we studied and create different acoustic models we create an  User Graphic
Interface (GUI) written in Python where we can make use of them. Basically, the
API allows off-line recognition speech in a comfortable environment using our
acoustic  models  described  in  previous  sections  and  shows  the  estimate
transcriptions. Moreover, the API allows supervised adaptation in case adaptation
data is required.

5.1 Acoustic models 

Accordingly with the results obtained in the previous sections, I decided that the
acoustic model used to recognize speech automatically it will be ….

Furthermore,  it  is  possible  to  adapt  the  system  in  two  different  approaches
according to speaker requirements:

a)  In  case  speaker  does  not  want  to  record  adaptation  data,  it  should  be  use
fMLLR adaptation

b) In case speaker does want to record adaptation data to improve the performance
accuracy, it should be use MAP+MLLR adaptation.

5.2 Procedure
In this section, we describe the main procedure that recognize speech follows.

1) Record speech

To record the speech we make use of the PyAudio in python. The set parameters
are the followings:

• Format = pyaudio.paInt16
• Channels = 1
• Rate = 16000
• Chunk = 1024
• Record_seconds = 5
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2) Prepare data

Data preparation is an important step in order to recognize speech in Kaldi. As we
want  to  prepare  data  which  we  will  decode  with  an  already  exist  system an
already  existing  language  model  (  created  in  the  previous  chapters)  only  the
follow documents must be prepared:

• text: This file contains mappings between utterances and utterance ids which
will be used by Kaldi

• spk2utt:  This  is  a  mapping  between  the  speaker  identifiers  and  all  the
utterance identifiers associated with the speaker.

• utt2spk  -  This  is  a  one-to-one  mapping  between  utterance  ids  and  the

corresponding speaker identifiers.

• wav.scp - This file is actually read directly by Kaldi programs when doing
feature extraction.

All procedure is done automatically using Perl scripts after the first steps.

3) Adaptation or not

If the speaker is not in the database of the training set, It could be possible that the
user wants to make use of the speaker supervised adaptation technique. 

Depending of the requirements of the user in terms of time, adaptation data could
be  needed or  not.  In  case  adapted  data  is  needed  the  user  must  follow some
instructions.

4) Result display

Finally, the user will obtain the transcription of the speech. 

5.3 API interface
In this section, we explain how is distributed the graphic user interface.

The main windows it is formed by two top level menus. File menu contains all
options  to  performance  the  speech  recognition.  Whereas,  Edit  menu  contains
different  options  to  configure  a  few  parameters  of  the  acoustic  models  like
number of jobs used to decode, or smoothing factor in MAP adaptation among
others. Figure 5.1 shows how it looks like the main interface.
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Figure 5.1: Main windows of the ASR API.

In the File menu, there are different options available. Record a new audio file to
include  on  the  audio  folder  to  recognize  or  start  a  new  record  removing  all
existing audio files to make a new recognition.

Moreover,  there  are  two different  options  of  recognition  as  we explain  in  the
previous sections: It  is possible to recognize speech with our selected acoustic
model tri2b explained in  capitol 3 or it  is  possible to adapt the system to the
speech characteristics of an specific speaker. Figure 5.2 and 5.3 show how is the
process of adapting with fMLLR technique.

Figure 5.2: Selection of the required adaptation on the GUI.
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Figure 5.3: Estimated transcriptions of the recorded speech.

Furthermore, information option allows to read about which kind of adaptation is
more appropriate depending on speakers requirements.

33



Automatic Speech Recognition with Kaldi toolkit.

6 Conclusion
Different approaches to train and adapt acoustic models have been studied to be
able to built an accurate automatic speech recognition system. On one hand, the
training part is defined as the most important step since it will be which determine
mainly the accuracy of our system. In our experiments, we observed during the
training phase a reduction of 20,82% in terms of word error rate from the initial
mono-phone acoustic model to the final system based on a discriminative training
on top of a trip-phone acoustic model with LDA+MLLT feature transformations.
Moreover, the amount of training data available is a decisive parameter in order to
get good results in term of recognition accuracy. As more data obtainable, better
results could be achieve.

On second hand, we observe that depending the requirements of the user, and the
amount of adaptation data available different approaches of adaptation could be
used. In this experiments, the adaptation step lead us to a reduction of almost 3%
in the word error rate, a quality measure of speech recognition accuracy.

After  the realization of the thesis,  we can express that  we achieved the goals
defined on the introduction section. We start with almost any knowledge about
what automatic speech recognition was and we end with a remarkable learning of
it, and with an accurate model which allows to recognize speech. 

ASR is a complex part of signal processing that has a lot of fields to study. Future
plans include the incorporation of an On-line Latgen Recognizer as well as the use
Subspace Gaussian Mixture Models to try to performance a multilingual acoustic
modeling, amount others. 

As all in life, once the first step is done, in this case an ASR system is built, a lot
of different options, that you have not noticed at the beginning, emerge. 
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8 Acronyms
ASR: Automatic Speech Recognition
HMM: Hidden Markov Models 
AM: Acoustic Model
LM:Language Model
MFCC: Mel Frequency Cepstral Coefficients
PLP: Perceptual Linear Prediction
MLLT: Maximum Likelihood Linear Transform
FFT: Fast Fourier Spectrum
LDA: Linear Discriminant Analysis
HLDA: Heteroscedastic Linear Discriminant Analysis
MLLR: Maximum Likelihood Linear Transform
FST: Finite-State Transducers
GMM: Gaussian Mixture Model
SGMM: Subspace Gaussian Mixture Model
WER: Word Error Rate
MLE: Maximum Likelihood Estimation
EM:  Expectation-Maximization
MMI: Maximum Mutual Information
bMMI: Bosted Maximum Mutual Information
MPE: Minimum Phone Error
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