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Technical Notes and Correspondence 

Some Optimization Models of Growth in Biology 

Mariusz Zi6lko and Jan Kozlowski 

Abstract-The presented models are applications of classical optimal 
control methods in biology. The growth of plants and animals are 
described by nonlinear ordinary differential equations. Biologically jus- 
tified limitations provide additional inequality constraints on the control 
functions and the state variable. The solutions of the optimization models 
are control functions which either maximize the amounts of energy 
allocated to reproduction or minimize the age of achieving adult body 
size. 

I. INTRODUCTION 
More than 100 years old and still central in biology is the concept 

of natural selection. Darwin formulated it as survival of the fittest, 
i.e., of individuals with features that allow them to leave the largest 
average number of offspring. This means that natural selection 
maximizes fitness. It follows from the theory of natural selection that 
organisms should be well adapted to their environmental conditions. 
The usefulness of the term “adaptation” has been criticized, however, 
because this term is not well defined and often leads to circular 
reasoning. In optimization models we ask for the optimal level 
of a given feature under a well-defined mathematical model and 
quantity criterion (fitness). Traditionally, biologists have formulated 
the theory of natural selection in words, without mathematical nota- 
tion. Although the first serious mathematical models were introduced 
into evolutionary theory in the 1920’s, control theory methods were 
applied no earlier than 20 years ago. The application of dynamic 
optimization based on the Pontryagin maximum principle is even 
more recent. The results presented in this paper have been published 
in several biology journals, with the emphasis of biological aspects. 
The aim of this paper is to present concisely some nontechnical 
applications of dynamic optimization. 

11. STATE EQUATIONS 
The sizes of an individual’s body parts at age t are described 

by the positive function z ( t )  E R”, which is measured in energy 
units such as calories. Each element of vector z is the size of a 
separate part of the body. Very frequently the first n - 1 elements 
described the sizes of the vegetative parts of the body, and the last 
one xn is the size of the generative part. The surplus energy acquired 
by an organism, i.e., energy not used for maintenance, is denoted 
by the scalar positive function f(z). This energy flux is allocated 
between vegetative and generative growth. It follows from biological 
assumptions that f: R” + R is a concave and increasing function. 
Vector control function ~ ( t )  E R” indicates the fraction of surplus 
energy going to the growth of n individual body parts at age t. Thus 
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the admissible set of the control function is defined 

” 

1 U z  ( t )  = 1 Vt  E [O, TI 
,=1 

where T denotes the life span or season length for annual organisms. 
Negative allocations are impossible; this makes all components of the 
control positive or equal to zero. It is also assumed that all surplus 
energy is allocated in an organism which consists of n subsystems. 

Under the above assumptions, the growth of a body is given by 
the vector ordinary differential equation 

i = Uf(.). (2)  

It is frequently assumed that there are only two equations 

(3) 

where z1 represents the vegetative and x2 the generative part of the 
body. Scalar control function ~ ( t )  is the fraction of surplus energy 
that goes to the reproductive part at age t. The energy flux takes 
usually the form 

(4) 
b 

f(.l) = a 4  - P.1 

where constant coefficients fulfil inequalities: 0 < a 5 b < 1 and 
o < p < c r .  

Iwasa and Roughgarden [2] presented an example of model (2) for 
plants. Their model consists of three equations. State equation (3) with 
linear function f ( m )  was considered by Vincent and Pulliam [lo] 
and King and Roughgarden [5] as a continuous version of Cohen’s 
problem [l]. The state equations used by Mirmirani and Oster [SI 
have the form 

(5) 
21 = U T X 1  - p X 1  Zl(0) > 0 { x* = (1 - U ) T Z l  - UT* Q(0) = 0 

where coefficients T, p. U are constant. Terms pzl and uz2 represent 
losses of vegetative and reproductive parts. King and Roughgarden 
[3] used (5) with coefficients depending on time t. Schaffer et al. 
[9] also considered nonstationary linear state equations that consisted 
of three equations and three control functions. The additional state 
equation represented the flux of energy to storage (bulbs, rhizomes, 
etc.). 

III. QUANTITY CRITERIA 

The optimization problem consists of finding the vector function 
U E U,  which satisfies assumptions (1) and (2) and maximizes the 
functional 

Q = z , ( T ) .  (6) 

In biological interpretation optimal allocation of energy maximizes 
fitness defined by (6). This criterion, which is equivalent to the 
expected number of offspring, was adopted in [1]-[3] and [7]-[ll]. 
Such a fitness measure is justified for annual organisms as well as 
for stationary populations. 

The nestling period is the most dangerous in a bird’s life, because 
of extremely high predator pressure. This means that natural selection 
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should minimize the time spent in the nest. Thus we can expect 
optimal resource allocation to the alimentary tract (the engine that 
drives growth) and the rest of the body. This case, considered by 
Konarzewski et al. [6], exemplifies the minimum time problem. The 
optimal solution is a time-dependent fraction of energy going into 
the growth of the digestive tract in such a way that the development 
period T is reduced to a minimum. 

Iv. INEQUALITY CONSTRAINTS 

The inequality constraint for state variables was considered by 
Konarzewski et al. [6]. It was assumed that the maximum ratio of 
alimentary tract weight 21 to body weight 2 1  + 2 2  for nestling birds 
cannot exceed a constant c < 1 

(7) 

Kozlowski and Zi6lko [7] considered the biologically justified 
assumption that the reproductive growth rate is limited by the current 
size of the reproductive organ. This leads to the differential inequality 
constraint 

where g is an increasing and C’ continuous function. 

V. OPTIMAL SOLUTION 
The dynamic allocation problem is to choose the control u( t )  

that maximizes fitness subject to the state equations and inequality 
constraints. The solutions of optimization problems ( l ) ,  (2), and (6) 
were obtained by the Pontryagin maximum principle. The Hamil- 
tonian is usually a linear function of control U. As the result the 
optimal solutions have bang-bang forms. Continuous solution u ( t )  
was obtained for random season length [4]. Kozlowski and Zi6lko 
[7] obtained a gradual switch from growth to reproduction under 
inequality constraint (8). The solution of the minimum-time problem 
of allocation of resources in growing nestlings [6], having a bang- 
bang form, i’s as follows: all surplus energy should be allocated to the 
digestive tract to get the maximum allowable proportion (7); then this 
proportion should be maintained until the final size of the digestive 
tract zz (T) is reached; finally, all surplus energy should be allocated 
to the rest of the body 2 1 .  

All the presented optimization problems have unique solutions, 
although this is not proved in the cited papers. These solutions are 
globally optimal what makes it easy to compute numerically the 
optimal solutions from the necessary conditions of optimality. 

VI. EXAMPLE NONLINEAR DYNAMIC 
OFTIMIZATION WITH AN INEQUALITY CONSTRAINT 

Surplus energy is partitioned between the vegetative part 2 1  and 
the reproductive part 22. The growth of these two subsystems is 
described by a set of two nonlinear ordinary differential equations 

51 = (1 - U)f(.l) (9) 
5 2  = Uf(Z1) (10) 

where f is the rate at which surplus energy is gained. The initial 
state, i.e., the sizes of both parts of the body of a given individual at 
the beginning of the season, is known 

m(0)  = 210 > 0 
zz(0) = 2 2 0  > 0. 

(11)  
(12) 

The control function 

0 I u( t )  I 1 U E L2(0 ,T)  (13) 

indicates the fraction of energy going to the reproductive part at age 
t. Season length T is assumed to be constant. 

The reproductive subsystem is initially very small, and it may be 
incapable of absorbing all surplus energy produced by the whole 
organism. This leads to the inequality constraint 

52 I d 2 2 )  (14) 

where g is a continuous increasing function (which usually does 
not differ much from a linear function) of the second state variable 
(reproductive part). Taking into account state equation (lo), inequality 
constraints (13) and (14) can be written in the form 

The quantity criterion (fitness) 

Q = r z ( T )  - ~ z ( 0 )  (16) 

is the difference between the size of reproductive part XZ(T)  at the 
end of the season and its initial size xz(0) .  For plants it is the 
difference between seed yield and the size of the primordium of that 
part at the beginning of the season. 

The optimization problem consists of finding the control function 
U which fulfils the inequality constraints (15) and maximizes the 
functional (16) in terms of state equations (9) and (10) and the initial 
conditions ( 1  1)  and (12). For the considered problem the Hamiltonian 
has the form 

(17) H = [ubz - Pl )  + PlIf(Jh) 

where p l  and p z  are the solutions of the adjoint equations 

PI = - [ 4 P 2  - Pl )  + plIf‘(z1) (18) 
p z  = 0 (19) 

with the final conditions 

p 1 ( T )  = 0 
p 2 ( T )  = 1 

and f’(z1) being the derivative of function f with respect to 11. 

Equation (19) with final condition (21) has solution 

p 2 ( t )  = 1. (22) 

The optimal solution which maximizes Hamiltonian (17) has the 
form 

0 if pl > 1 

1 

Let us now analyze these three cases: 

U = { g(zz) / f (m)  if PI  < 1 and f(z1) > d m )  
if PI < 1 and f (21)  I g(z2). 

(23) 

1) For control function U = 0 the state equations (9) and (IO) 
obtain the form 

i l  = f ( I 1 )  (24) 
iz = 0. (25) * 

Equation (25) with initial condition (12) has solution 

2 2 ( t )  = 2 2 0 .  (26) 

The adjoint equation (18) has the form 

$1 = -p1f ’ (n)  (27) 

and solution 

where c1 is a constant depending on the boundary condition. 
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2) If u = g(z2)/f(z1) then the state equations obtain the form 

51 = f(z1) - g(22) (29) 

i z  = g(z2) (30) 

and the adjoint equation (1 8) has solution 
rt  1 

where c2 is a constant and TI is the assumed time of beginning 
of integration. 

3) If u = 1 it is easy to find the solution for state and adjoint 
equations. The state equations have the form 

il = o  (32) 

i 2  = f(C3) (33) 

z1(t) = c3 (34) 
. ~ z ( t )  = ~4 + f (c3)( t  - Tz). (35) 

61 = -f’(C3) (36) 

(37) 

and solutions 

The adjoint equation 

has solution 

pi(t)  = G - f’(c3)(t - T3) 

where c3. c4. cj. T2, T3 are constants. 
For the first case, (27) with condition (20) has solution (28) equal 

to zero, i.e., c1 = 0. This is contradictory to the Pontryagin maximum 
pnnciple (23). For the second case, (31) with condition (20) has the 
form 

P T  

and for the last case, ( U  = 1) (37) with condition (20) reads 

pi( t )  = f’(c3)(T - t ) .  (39) 

Both functions (38) and (39) are equal to zero for t = T and are 
positive for sufficiently large t < T. Thus, there exists a period of 
time which includes the endpoint, where conditions (23) are satisfied. 
Continuing the considerations for decreasing time (i.e., from final 
time T backward to initial time zero), we obtain five possibilities for 
an optimal solution. 

Case 1: 

u ( t )  = g ( m ( f ) ) / f ( m ( f ) )  for t E [O.T]. (40) 

For this case we obtain from (23) and (38) the characteristic inequality 

u ( t )  = 1 for t E [O,T]. 

From (23) and (39) we conclude the inequality 

f’(cr1o)T < 1. 

Case 3: 
0 i f O s t < T ,  
1 i f T , < t s T  u ( t )  = 

(43) 

where T, denotes the switching point which fulfils condition 

f’(zl(T,))(T - Ts) = 1. (45) 

Constraint (14) is inactive. This means that 

f (Zl (Ts) )  5 S ( ” Z 0 ) .  (46) 

Case 4: 

For this case we obtain from (23), (31), and (39) the inequality 

fl(.l(Ts))f(zl(T,))(T - T3) 

+ l=* g(zz(t))#’(z1(t))dt < f ( Z l 0 ) .  (48) 

Moreover, constraint (14) is active until time T,, at which 

f(;.l(Ts)) = S(I2(Ts)). (49) 

Case 5: 
0 if O < t < T 1  

if T2 < t 5 T. 
u ( t )  = g(m(t ) ) / f (z l ( t ) )  if TI < t < TZ (50) 

From (23), (31), and (39) we find that the following equality must 
hold 

f (z i (T1))  = f ( s i ( T ~ ) ) f ’ ( ~ i ( T * ) ) ( T -  Tz) 

L 
+ 6 d.Q(t))f’(Tl( t ) )dt .  (51) 

Constraint (14) is active from time TI until time T2. This means that 

f (si ( Tz 1 ) = g(  ~2 ( T2 1 1. (52) 

Although there are five qualitatively different solutions, only 
the fifth one has biological meaning. The other solutions require 
biologically unreasonable assumptions, e.g., an enormous initial size 
of reproductive organs (Case 3); excessively large initial body size 
(Cases 2 and 4), causing in the extreme event no growth during life 
(Case 2); or lifetime absorption of more energy than can be used for 
reproductive production (Case 1). The optimal strategy (50) divides 
the life span into three parts: pure vegetative growth u ( t )  = 0, mixed 
vegetative and generative growth with u(t) = g(zZ(t))/f(zl ( t ) ) ,  
and finally pure generative growth u ( t )  = 1. The value of the 
control function in the period of mixed growth results from the 
maximization of reproductive growth under the active constraint (14). 
The shapes of functions g ( z q )  and f ( z l )  have a great influence 
on the switching times TI and 7 2 .  It is biologically justified that 
g(zz(T1)) < f (z l (T1)) .  Both of these are increasing functions, but 
g(z2) is almost linear and f ( r 1 )  is concave. This means that there 
is a switching time T2 such that g(sz(T2)) = f ( n ( T 2 ) ) .  

VII. EXAMPLE: TIME-OPTIMAL PROBLEM 

Let us consider the growth of an altricial chick described by a set 
of differential equations 

i 1  = u f ( z 1 , z z )  (53) 
i 2  = (1 - U)f(Tl,ZZ) (54) 

where control function U is the fraction of energy allocated to growth 
of the digestive tract T I .  The second variable s.2 is the weight of the 
rest of body. The control function satisfies conditions 

0 5 u ( t )  5 1 u E L 2 ( 0 . T )  (55) 

where the initial time is the chick‘s hatching and T is the final time, 
i.e., the age at fledging. The flux of surplus energy f(x1, z z )  is a C’ 
continuous function which satisfies inequality constraints 
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where  AS) is a small residuum of an order greater than one with 
respect to As. The time required to pass the segments parallel to the 
axes is given by the formulas 

X 

+ o(Axi) (63) 

+ o(A2z). (64) 

Ax1 
f(Xl(tl), 2 2 ( @ ) )  

Ax2 
f ( a ( 7 L  m(t1 ) )  

Ax1 + Ax2 

At, = 

At2 = 

For a sufficiently small As  we obtain the inequality 

I At, + At2 5 

b + o(As)  (65) 
- As(cos(p) + sin(9)) - 

XIT XI I 
Fig. 1. 
for the arbitrary admissible trajectory IO. 

The sequence of trajectories convergent to the optimal trajectory x 

for every 21 > 0 and 2 2  > 0. This means that the flux of surplus 
energy is an increasing function of the size of the digestive tract. On 
the other hand, the cost of maintenance is higher for a large organism. 
This makes the flux of surplus energy a decreasing function of the 
size of the rest of the body. 

The initial state at hatching and the final state at fledging are known 
and satisfy conditions 

0 < Zl(0) = 210 < Zl(T) = 217 

0 < ZZ(0) = 2 2 0  < x 2 ( T )  = X 2 T .  (59) 

Throughout all of a chick's development, the maximum ratio of 
alimentary tract size to body size cannot exceed a positive constant 
c < l  

21 5 c. 
2 1  + x 2  

The optimization problem consists of finding the control function 
'U which satisfies the constraints (55) and which in terms of state 
equations (53) and (54) and inequality (60) leads the system from 
the initial state to the final state in the minimal time. The solution 
describes the optimal allocation of energy between the development 
of the alimentary tract (the engine supplying energy) and the rest of 
the body. Natural selection should prefer such a strategy in altricial 
birds. 

Here we sketch out a proof that, under additional assumptions 
(56)-(58), the solution (see Fig. 1) of the considered optimization 
problem has the form 

The set of admissible states (see Fig. 1) is bounded by the xz- 
axis and by the line x2 = (1 - c ) q / c .  The state variables are 
positive and nondecreasing functions of time t. To prove that the 
control defined by (61) is time optimal, we shall show that for every 
other admissible control uo in L2 for which the respective trajectory 
xo satisfies boundary conditions (59) it is possible to construct a 
sequence of admissible controls U' ( i  = 0.1,2, . . .) such that U' is 
better than u3 if i > j. The trajectories x' ( i  = 0,1 ,2 , .  . .) reach the 
final condition at time T,. It follows from the construction that the 
sequence T, strictly decreases and is convergent to optimal T. Fig. 1 
presents the method for construction of such a sequence. 

The time required to pass the segment of trajectory A s  (see the 
left part of Fig. 1) is given by the formula 

+o(As) (62) 
AS At = 

f(Tl(tl) .Sz(tl))Ju2(tl)  + (1  - U ( t 1 ) ) '  

Ax1 = AS COS(^) + o(As) 

Ax2 = As sin(9) + o(As). 

Taking into account that 

we obtain from the inequality (65) 

As 
Atl+Atz-At 5 F(t1) +o(As) (69) 

J W l )  + (1  - u(t1))2 

where 

because 

I 2 f(m(tl)rx2(tl))  (71) 

results from definition (66) and the assumed inequalities (57) and 
(58). From inequality (69) we conclude that the trajectory x1 (see 
Fig. 1) needs less time to pass than the arbitrarily taken trajectory 

In a similar way we proceed to prove that the third trajectory (2' 
in Fig. 1) is better than trajectory x1. For this case (presented on the 
right side of Fig. 1) let us first notice that 

X O .  

As At = + o(As) (72) 
f ( 2 l ( t 2 ) , 2 2 ( t 2 ) ) ~ ~ 2 ( t 2 )  + (1 - U ( t 2 ) ) Z  

and 

(73) 

(74) 

For a sufficiently small As  we obtain 

Ax1 = Ascos(J1) 

AXZ = Assin(4) .  (77) 
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Taking into account that 

1 
sin($) + c o s ( + )  = (78) 

J U Z ( t 9 )  + (1 - u( t*) )2  

we finally obtain from inequality (75) 

where 

results from definition (76) and assumptions (57) and (58). In a similar 
way we can construct other “better” trajectories which converge to 
the optimal trajectory x (see Fig. 1) defined by control (61). 

Field data show that in altricial birds, the ratio of the initial size of 
the digestive tract to the body size is equal to c at hatching. Natural 
selection in embryonic development, not considered in the model, 
should lead to such a ratio. During the first part of postembrionic 
development, surplus energy should be allocated to the digestive tract 
at the highest rate permitted by inequality (60). At a certain time the 
alimentary tract reaches its final size and then all energy is allocated 
to the rest of the body. 

ACKNOWLEDGMENT 

The authors wish to thank A. Korytowski for showing them how 
to prove the solution for the second example and the anonymous 
reviewers for their helpful suggestions. 

REFERENCES 

D. Cohen, “Maximizing final yield when growth is limited by time or 
by limiting resources,” J .  Theor. Biol., vol. 33, pp. 299-307, 1971. 
Y. Iwasa and J. Roughgarden, “Shoothoot balance of plants: Optimal 
growth of a system with many vegetative organs,” Theor. Pop. Biol., 

D. King and J. Roughgarden, “Multiple switches between vegetative 
and reproductive growth in annual plants,” Theor. Pop. Biol., vol. 21, 
pp. 194-204, 1982. 
-, “Graded allocation between vegetative and reproductive growth 
for annual plants in growing seasons of random length,” Theor. Pop. 
Biol., vol. 22, pp. 1-16, 1982. 
-, “Energy allocation patterns of the California grassland annuals 
Plantago erecta and Clarkia mbicunda,” Ecology, vol. 64, pp. 16-24, 
1983. 
M. Konarzewski, J. Kozlowski, and M. Zi6lko, ‘:Optimal allocation of 
energy to growth of the alimentary tract in birds,” Func. Ecol., vol. 3, 
pp. 589-596, 1989. 
J. Kozlowski and M. Zibko, “Gradual transition from vegetative to 
reproductive growth is optimal when the maximum rate of reproductive 
growth is limited,” Theor. Pop. Biol., vol. 34, pp. 118-129, 1988. 
M. Mirmirani and G. Oster, “Competition, kin selection, and evolution- 
ary stable strategy,” Theor. Pop. B i d ,  vol. 13, pp. 304-339, 1978. 
W. M. Schaffer, R. S. Inouye, and T. S. Whittam, “Energy allocation 
by an annual plant when the effect of seasonality on growth and 
reproduction are decoupled,” Amer. Nutur., vol. 120, pp. 787-815, 1982. 
T. L. Vincent and H. R. Pulliam, “Evolution of life history strategies for 
an asexual annual plant model,” Theor. Pop. Biol., vol. 17, pp. 215-231, 
1980. 
M. Ziblko and J. Kozlowski, “Evolution of body size: An optimization 
model,” Math. Biosci., vol. 64, pp. 127-143, 1983. 
N. Pemn and R. Sibly, “Dynamic models of energy allocation and 
investment,” Ann. Rev. Ecol. Syst., vol. 24, pp. 379410, 1993. 

vol. 25, pp. 78-105, 1984. 

A Graphical Approach of the Spectral 
Theory in the (ma,+) Algebra 

Jean Mairesse 

Abstract-In this paper, we study matrices in the @ax,+) algebra. We 
introduce a new tool for describing the deterministic spectral behavior 
of matrices of size 3 x 3. It consists of a graphical representation of 
eigenvectors and domains of attraction in the projective space.’ 

I. INTRODUCTION 
Discrete-events dynamic systems (DEDS’s) are a common frame- 

work to represent communication or manufacturing networks. Petri 
nets, and more precisely event graphs, are an example of a for- 
malism to study DEDS’s. Event graphs model phenomena such as 
synchronization or blocking. They have a simple interpretation in a 
nonconventional algebra, the (max,+) algebra. 

The spectral theory of matrices in the (max,+) algebra is now 
well known. It can be tracked back to [5] or [4]. One of the main 
differences with the classical spectral theory is that there is a unique 
eigenvalue for irreducible matrices. As a consequence, the main 
interest and difficulty is to study eigenvectors associated with the 
unique eigenvalue. For a timed event graph, the eigenvalue is exactly 
the mean cycle time (inverse of the throughput rate). On the other 
hand, eigenvectors are associated with quantities such as: number of 
tokens in a place, waiting times, or idle times. Multiple eigenvectors 
mean multiple possible regimes for these quantities. 

In this paper, we present the classical spectral results under a 
new light. We develop a tool for describing the spectral behavior 
of matrices of size 3 x 3. It consists of a graphical representation of 
asymptotic regimes in a projective space. 

II. THE (max,+) ALGEBRA 
We consider systems whose dynamic behavior is driven by a 

recursive equation of the form 

We allow A,, to be equal to --x. Let us introduce some new 
notations. 
Definition I [(ma, +) Algebra]: We consider the semi-field (IR U 

{ -m}. +I . ). The law 5 is “max,” and ~ is the usual addition. We 
set E = -x and c = 0. The element E is neutral for the operation 
G and absorbing for L. The element e is neutral for IX. The law + 
is idempotent, i.e., a @ a = a.  (IR U { E } ,  e. El) is an idempotent 
semiring or dioid. It is usually referred to as the (max,+) algebra. We 
shall denote it by Rmax. In the rest of the paper, the notations “+, 
x ”  will stand for the usual addition and multiplication. We will write 
ab for a Z b, however, whenever there is no possible confusion. For 
example, for a E IR. ad = a’’ = d x a .  

’ A more complete version of this paper is accessible via ftp. ftp.inria.fr in 
INRIA/publication/RR-2078.ps.g~. 
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